63 research outputs found

    Digestión anaerobia de residuos de poda como alternativa para disminuir emisiones de gases de efecto invernadero en rellenos sanitarios

    Get PDF
    La disposición de residuos sólidos urbanos en Colombia se realiza principalmente en rellenos sanitarios, los cuales tienen una limitada vida útil para su operación. Actualmente, cerca del 50% de estos sistemas se encuentran en la etapa final de su vida útil, por lo que se requiere evaluar alternativas de tratamiento y disposición para dichos residuos. Los residuos sólidos urbanos generados en Colombia contienen un alto contenido de material orgánico, lo cual contribuye a la emisión fugitiva de gases de efecto invernadero (GEI) en rellenos sanitarios; en tal sentido, el uso de digestión anaerobia resulta una alternativa tecnológica apropiada con el beneficio de facilitar el aprovechamiento de metano (CH4) como fuente de energía. Este trabajo busca realizar una comparación directa entre las emisiones de GEI en rellenos sanitarios y en el proceso de digestión anaerobia como opciones para la disposición y tratamiento de residuos orgánicos urbanos en Colombia. Para tal fin, la cuantificación de GEI se realizó mediante el desarrollo de un caso de estudio para la disposición de residuos de poda en la ciudad de Manizales, siguiendo modelos de cuantificación teórica para las emisiones diarias de metano y dióxido de carbono. Los resultados obtenidos muestran diferencias considerables entre las técnicas de cálculo utilizadas, especialmente para la evaluación de digestión anaerobia por el carácter general de los factores de emisión. Sin embargo fue posible estimar que cerca de 50 ton de metano y 1200 ton de dióxido de carbono, reportados como CO2 equivalente, dejarían de ser emitidos anualmente en la ciudad de Manizales en caso de implementarse la digestión anaerobia como alternativa a la disposición actual de residuos de poda en el relleno sanitario.ÁREA TEMÁTICA: Energía y Ambient

    In-situ estimation of ice crystal properties at the South Pole using LED calibration data from the IceCube Neutrino Observatory

    Get PDF
    The IceCube Neutrino Observatory instruments about 1 km3 of deep, glacial ice at the geographic South Pole using 5160 photomultipliers to detect Cherenkov light emitted by charged relativistic particles. A unexpected light propagation effect observed by the experiment is an anisotropic attenuation, which is aligned with the local flow direction of the ice. Birefringent light propagation has been examined as a possible explanation for this effect. The predictions of a first-principles birefringence model developed for this purpose, in particular curved light trajectories resulting from asymmetric diffusion, provide a qualitatively good match to the main features of the data. This in turn allows us to deduce ice crystal properties. Since the wavelength of the detected light is short compared to the crystal size, these crystal properties do not only include the crystal orientation fabric, but also the average crystal size and shape, as a function of depth. By adding small empirical corrections to this first-principles model, a quantitatively accurate description of the optical properties of the IceCube glacial ice is obtained. In this paper, we present the experimental signature of ice optical anisotropy observed in IceCube LED calibration data, the theory and parametrization of the birefringence effect, the fitting procedures of these parameterizations to experimental data as well as the inferred crystal properties.</p

    Conditional normalizing flows for IceCube event reconstruction

    Get PDF

    Galactic Core-Collapse Supernovae at IceCube: “Fire Drill” Data Challenges and follow-up

    Get PDF
    The next Galactic core-collapse supernova (CCSN) presents a once-in-a-lifetime opportunity to make astrophysical measurements using neutrinos, gravitational waves, and electromagnetic radiation. CCSNe local to the Milky Way are extremely rare, so it is paramount that detectors are prepared to observe the signal when it arrives. The IceCube Neutrino Observatory, a gigaton water Cherenkov detector below the South Pole, is sensitive to the burst of neutrinos released by a Galactic CCSN at a level >10σ. This burst of neutrinos precedes optical emission by hours to days, enabling neutrinos to serve as an early warning for follow-up observation. IceCube\u27s detection capabilities make it a cornerstone of the global network of neutrino detectors monitoring for Galactic CCSNe, the SuperNova Early Warning System (SNEWS 2.0). In this contribution, we describe IceCube\u27s sensitivity to Galactic CCSNe and strategies for operational readiness, including "fire drill" data challenges. We also discuss coordination with SNEWS 2.0

    All-Energy Search for Solar Atmospheric Neutrinos with IceCube

    Get PDF
    The interaction of cosmic rays with the solar atmosphere generates a secondary flux of mesons that decay into photons and neutrinos – the so-called solar atmospheric flux. Although the gamma-ray component of this flux has been observed in Fermi-LAT and HAWC Observatory data, the neutrino component remains undetected. The energy distribution of those neutrinos follows a soft spectrum that extends from the GeV to the multi-TeV range, making large Cherenkov neutrino telescopes a suitable for probing this flux. In this contribution, we will discuss current progress of a search for the solar neutrino flux by the IceCube Neutrino Observatory using all available data since 2011. Compared to the previous analysis which considered only high-energy muon neutrino tracks, we will additionally consider events produced by all flavors of neutrinos down to GeV-scale energies. These new events should improve our analysis sensitivity since the flux falls quickly with energy. Determining the magnitude of the neutrino flux is essential, since it is an irreducible background to indirect solar dark matter searches

    Recent neutrino oscillation results with the IceCube experiment

    Get PDF
    The IceCube South Pole Neutrino Observatory is a Cherenkov detector instrumented in a cubic kilometer of ice at the South Pole. IceCube’s primary scientific goal is the detection of TeV neutrino emissions from astrophysical sources. At the lower center of the IceCube array, there is a subdetector called DeepCore, which has a denser configuration that makes it possible to lower the energy threshold of IceCube and observe GeV-scale neutrinos, opening the window to atmospheric neutrino oscillations studies. Advances in physics sensitivity have recently been achieved by employing Convolutional Neural Networks to reconstruct neutrino interactions in the DeepCore detector. In this contribution, the recent IceCube result from the atmospheric muon neutrino disappearance analysis using the CNN-reconstructed neutrino sample are presented and compared to the existing worldwide measurements

    Angular dependence of the atmospheric neutrino flux with IceCube data

    Get PDF
    IceCube Neutrino Observatory, the cubic kilometer detector embedded in ice of the geographic South Pole, is capable of detecting particles from several GeV up to PeV energies enabling precise neutrino spectrum measurement. The diffuse neutrino flux can be subdivided into three components: astrophysical, from extraterrestrial sources; conventional, from pion and kaon decays in atmospheric Cosmic Ray cascades; and the yet undetected prompt component from the decay of charmed hadrons. A particular focus of this work is to test the predicted angular dependence of the atmospheric neutrino flux using an unfolding method. Unfolding is a set of methods aimed at determining a value from related quantities in a model-independent way, eliminating the influence of several assumptions made in the process. In this work, we unfold the muon neutrino energy spectrum and employ a novel technique for rebinning the observable space to ensure sufficient event numbers within the low statistic region at the highest energies. We present the unfolded energy and zenith angle spectrum reconstructed from IceCube data and compare the result with model expectations and previous measurements

    Searching for high-energy neutrinos from shock-interaction powered supernovae with the IceCube Neutrino Observatory

    Get PDF

    TXS 0506+056 with Updated IceCube Data

    Get PDF
    Past results from the IceCube Collaboration have suggested that the blazar TXS 0506+056 is a potential source of astrophysical neutrinos. However, in the years since there have been numerous updates to event processing and reconstruction, as well as improvements to the statistical methods used to search for astrophysical neutrino sources. These improvements in combination with additional years of data have resulted in the identification of NGC 1068 as a second neutrino source candidate. This talk will re-examine time-dependent neutrino emission from TXS 0506+056 using the most recent northern-sky data sample that was used in the analysis of NGC 1068. The results of using this updated data sample to obtain a significance and flux fit for the 2014 TXS 0506+056 "untriggered" neutrino flare are reported

    Searching for IceCube sub-TeV neutrino counterparts to sub-threshold Gravitational Wave events

    Get PDF
    Since the release of the Gravitational Wave Transient Catalogue GWTC-2.1 by the LIGO-Virgo collaboration, sub-threshold gravitational wave (GW) candidates are publicly available. They are expected to be released in real-time as well, in the upcoming O4 run. Using these GW candidates for multi-messenger studies complement the ongoing efforts to identify neutrino counterparts to GW events. This in turn, allows us to schedule electromagnetic follow-up searches more efficiently. However, the definition and criteria for sub-threshold candidates are pretty flexible. Finding a multi-messenger counterpart via archival studies for these candidates will help to set up strong bounds on the GW parameters which are useful for defining a GW signal as sub-threshold, thereby increasing their significance for scheduling follow-up searches. Here, we present the current status of this ongoing work with the IceCube Neutrino Observatory. We perform a selection of the sub-threshold GW candidates from GWTC-2.1 and conduct an archival search for sub-TeV neutrino counterparts detected by the dense infill array of the IceCube Neutrino Observatory, known as "DeepCore". For this, an Unbinned Maximum Likelihood (UML) method is used. We report the 90% C.L. sensitivities of this sub-TeV neutrino dataset for each selected sub-threshold GW candidate, considering the spatial and temporal correlation between the GW and neutrino events within a 1000 s time window
    corecore